MULTI-BRANCH DEEP LEARNING BASED TRANSPORT MODE DETECTION USING WEAKLY SUPERVISED LABELS

نویسندگان

چکیده

Abstract. Mobility data, based on global positioning system (GPS) tracking, have been widely used in many areas. These include, but not limited to: user direction guidance, analyzing travel patterns, and evaluating impacts. Transport Mode Detection (TMD) is an essential factor understanding mobility within the transport system. A TMD model assigns a GPS point or trajectory to particular mode user’s current activity. However, complexity of prediction procedure increases with number modes that need be predicted given increasing overlaps feature values between multiple transportation modes. Hence, this study proposes two-branch deep learning-based predicts multi-class improve accuracy. In addition, it proposed weakly supervised labelling using snorkel volume labelled data resulting We considered publicly available road networks, railway bus routes, etc., for creating road, bus, train labels by overlaying points these networks. introduced boolean (true/false) soft-labelling function, where same overlaid network. The raw were generate point-level features such as speed, speed difference, acceleration, acceleration initial bearing all derived model. To construct we opted use two branches latitude longitude one are other.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly supervised object detection using pseudo-strong labels

Object detection is an import task of computer vision. A variety of methods have been proposed, but methods using the weak labels still do not have a satisfactory result. In this paper, we propose a new framework that using the weakly supervised method’s output as the pseudo-strong labels to train a strongly supervised model. One weakly supervised method is treated as black-box to generate clas...

متن کامل

Weakly Supervised Salient Object Detection Using Image Labels

Deep learning based salient object detection has recently achieved great success with its performance greatly outperforms any other unsupervised methods. However, annotating per-pixel saliency masks is a tedious and inefficient procedure. In this paper, we note that superior salient object detection can be obtained by iteratively mining and correcting the labeling ambiguity on saliency maps fro...

متن کامل

Learning deep structured network for weakly supervised change detection

Conventional change detection methods require a large number of images to learn background models or depend on tedious pixel-level labeling by humans. In this paper, we present a weakly supervised approach that needs only image-level labels to simultaneously detect and localize changes in a pair of images. To this end, we employ a deep neural network with DAG topology to learn patterns of chang...

متن کامل

Self Paced Deep Learning for Weakly Supervised Object Detection

In a weakly-supervised scenario, object detectors need to be trained using image-level annotation only. Since bounding-box-level ground truth is not available, mostof the solutions proposed so far are based on an iterative approach in which theclassifier, obtained in the previous iteration, is used to predict the objects’ positionswhich are used for training in the current itera...

متن کامل

Feature Learning Based Deep Supervised Hashing with Pairwise Labels

Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hashcode learning with deep neural networks, which have shown better pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

سال: 2022

ISSN: ['1682-1777', '1682-1750', '2194-9034']

DOI: https://doi.org/10.5194/isprs-archives-xlviii-4-w1-2022-525-2022